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Abstract. A spatially explicit, high-resolution forest age map is critical for quantifying forest carbon stock and carbon 16 

sequestration potential. Previous endeavours to estimate forest age in China at national scale mainly concentrated on a sparse 17 

resolution or incomplete forest ecosystems because of complex species composition, vast forest areas, insufficient field 18 

measurements, and the lack of effective methods. To overcome these limitations, we construct a framework for estimating 19 

China’s forest age by combining remote-sensing time series analysis with machine learning algorithms based on massive field 20 

measurements and remote-sensing dataset. Specifically, the LandTrendr time series analysis is first applied to detect forest 21 

disturbances from 1985 to 2020, with the time since the last disturbance serving as a proxy for forest age. Next, for pixels 22 

where no disturbance, machine learning algorithms are used to estimate forest age from independent variables, including forest 23 

height, climate, terrain, soil, and forest-age field measurements. Finally, MLA models are established for each vegetation 24 

division and used to estimate forest ages. Combining these two methods produces a spatially explicit 30 m resolution forest-25 

age map for China in the year of 2020. Validation against independent field plots produces a R2 from 0.51 to 0.63. Nationally, 26 

the average forest age is 56.1 years (standard deviation = 32.7 years), where the Qinghai-Tibet Plateau alpine vegetation zone 27 

has the oldest forest with an average of 138.0 years, whereas the forest in the warm temperate deciduous-broadleaf forest 28 

vegetation zone averages only 28.5 years. This 30-m-resolution forest-age map provides vital information for accurately 29 

understanding the ecological benefits of China’s forests and to sustainably manage China’s forest resources. 30 

1 Introduction 31 

Forest age provides critical information about forest ecosystem succession and condition, making it essential for understanding 32 

the ecological benefits of forests (Lin et al., 2023). China’s forests have been significantly disrupted in the past few decades 33 
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due to natural disasters and human activities (Niu et al., 2023), resulting in substantial changes to the forest-age structure. This 34 

situation makes it significantly challenging to accurately understand forest ecosystem carbon storage (Pan et al., 2011; Tong 35 

et al., 2020). Because of complex species composition, vast forest areas, insufficient field measurements, and the lack of 36 

effective methods, existing estimates of the China’s forest age on the national scale have concentrated on sparse resolution 37 

(Zhang et al., 2017) or incomplete forest ecosystem (Xiao et al., 2023). This brought considerable uncertainties in assessing 38 

the carbon sources and sinks in China’s forest ecosystem (Piao et al., 2022; Wang et al., 2022). Therefore, there is an urgent 39 

need to map time-efficient forest age with high spatial resolution across China.  40 

Currently, China’s forest age is acquired mainly through the national forest inventory, which is highly accurate (Xiao et al., 41 

2023) but requires extensive labour and material resources and is time-consuming and costly (Liu et al., 2022). Additionally, 42 

most of China’s forests are in steep mountainous areas that are difficult to access (Cheng et al., 2023a), which limits the survey 43 

range and uneven distribution of field samples, making it difficult to estimate the age of China’s forests on a national scale. 44 

Thus, using the traditional method of forest inventory is difficult to capture the complete age distribution and spatial 45 

characteristics of China’s forests in a timely and accurate manner. 46 

Remote sensing technology has been proved effective in estimating forest cover (Su et al., 2020; Tubiello et al., 2023) and 47 

forest structure (Yu et al., 2020a; Maltman et al., 2023a) at multiple scales. The opening and sharing of Landsat time series 48 

and the development of Google Earth Engine (GEE) cloud-processing platform has facilitated the application of remote sensing 49 

to estimate forest age. Several studies have focused on mapping China’s forest age; for example, Xiao et al. (2023) mapped 50 

the age of China’s young forests at 30 m resolution by using continuous change detection and classification (CCDC) method. 51 

Yu et al. (2020a) produced a 1-km resolution map of the age for planted forests in China by using the age-height equations. 52 

Zhang et al. (2017) proposed a top-down method to generate a 1km stand age map using climate and forest height data. Zhang 53 

et al. (2014) mapped a national forest age map with 1 km resolution by using remote-sensing forest height and forest type data. 54 

However, the existing China’s forest age map at on a national scale has been typically undertaken at coarser spatial resolution 55 

(e.g., 1 km), with finer resolution (e.g., 30 m) reserved for young forests. There is still lacking forest age spatial dataset with 56 

high resolution covering all of China’s forests region. 57 

The use of remote sensing to map forest age primarily encompasses two methodological categories. The first is statistical 58 

parametric regression approaches, which estimates forest age through establishing a coherent relationship between remote 59 

sensing features and field-collected empirical samples to deduce forest age (Maltamo et al., 2020; Schumacher et al., 2020a). 60 

Growth models are one of the most popular parametric models of forest age estimation (Zhang et al., 2014; Zhang et al., 2017; 61 

Yu et al., 2020b). However, this type of model is based on tree species, which makes it hard to derive forest age when lacking 62 

species information, especially over large scales. The second methodological category is nonparametric machine learning 63 

algorithms (MLAs), which are more flexible and can handle complex problems (Alerskans et al., 2022). Currently, the 64 

application of MLAs to estimate national forest age has not been widely explored. Some previous studies used a single MLA, 65 

such as Random Forest (RF) (Besnard et al., 2021b), to estimate the age of the forest. However, the wide distribution of forests, 66 

complex forest types, and diverse terrain and climate conditions in China make applying a single model to determine the 67 
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national age forests difficult. Therefore, it is necessary to explore the applicability of MLAs in the estimation of forest age in 68 

different regions of China.  69 

The objective of the present study is to generate the first China’s forest age dataset at 30 m resolution using multi-source 70 

datasets based on remote sensing time series analysis and MLAs. Specifically, first, we apply the LandTrendr change detection 71 

algorithm to monitor forests disturbed between 1985 and 2020 to estimate their ages. Subsequently, utilizing mainstream 72 

machine learning algorithms, we engage in a zone-based exploration to determine the optimal models for forest age estimation 73 

in undisturbed areas to estimate forest age. Finally, the resulting forest age map is validated by using forest field measurements 74 

and existing remote sensing products. The generated 30-m-resolution forest age map provides critical information to quantify 75 

forest carbon storage and to sustainably manage China’s forests. 76 

2 Materials and methods 77 

2.1 Dataset and pre-processing 78 

2.1.1 Forest inventory data 79 

The data from China’s seventh national forest inventory survey from 2004 to 2008 (http://www.forestry.gov.cn/) were 80 

collected to develop models to estimate forest age. The inventory involves systematically and accurately monitoring the 81 

national forest resources based on 667m2sample plots covering the whole country (Ren et al., 2011). The main information 82 

collected from the sample plots are tree species, stand age, average tree height, and geographic location. The stand age is 83 

determined based on the planting time or is estimated using tree diameter at breast height (Zhang et al., 2017). We totally 84 

collected 58,033 field plots ranging in age from 1 to 480 years (Figures 1b and 1c). The mean age of the samples is 34.0 years, 85 

with a standard deviation of 29.6 years. The sample plots were distributed across eight vegetation divisions (Figure 1b), each 86 

containing at least 436 sample plots for building MLA models to estimate forest age (Figure 1d). 87 
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 88 

Figure 1. Forest mask and field sample distribution. (a) Planted forest and natural forest mask generated by Cheng et al. (2023). (b) 89 
Distribution of field samples over eight vegetation divisions. (c) Frequency distribution of field sample ages. (d) Frequency distribution of 90 
field samples for eight vegetation divisions. PF: planted forest, NF: natural forest, CT: Cold Temperate needleleaf forest, WT: Warm 91 
Temperate deciduous-broadleaf forest, QT: Qinghai-Tibet Plateau alpine vegetation, TM: Tropical Monsoon forest-rainforest, TS: 92 
Temperate Steppe, TD: Temperate Desert, TN: Temperate Needleleaf-broadleaf mixed forest, SE: Subtropical Evergreen broadleaf forest. 93 
N: the number of plots, Std: standard deviation, Mean: mean age. 94 

2.1.2 Landsat time-series data 95 

From the GEE platform, we collected Landsat TM, ETM+, OLI Tier 1 surface reflectance images dating from 1985 to 2020 96 

to estimate forest age for disturbed forest regions. All data were atmospherically corrected and processed by the Land Surface 97 

Reflectance Code and the Landsat Ecosystem Disturbance Adaptive Processing System algorithms. We removed the clouds 98 

or cloud shadows using the C function of the mask algorithm (Du et al., 2023), then we created composited images using a 99 

median compositing method for forest regions. Finally, we calculated the normalized burn ratio (NBR) to detect forest 100 

disturbance. NBR has been proved effective in numerous studies detecting forest disturbance (Du et al., 2023; Tian et al., 101 

2023). It is calculated as follows by using the near-infrared (NIR) and short-wave infrared (SWIR) bands:  102 
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𝑁𝐵𝑅 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
.  (Eq. 1) 

2.1.3 Forest mask 103 

This study uses the 2020 dataset of planted and natural forests at 30 m resolution in China (Figure 1a) as a mask for forest age 104 

mapping. This dataset is produced by integrating multisource remote-sensing data and a large number of crowdsourced samples, 105 

with an overall accuracy of over 80% (Cheng et al., 2023a). In this study, we employ this dataset as a forest mask and utilize 106 

a combination of time series change detection algorithms and MLAs to trace the age of these planted and natural forests. 107 

2.1.4 Forest height data 108 

The canopy height data for China was downloaded from the website (https://3decology.org/), which was generated based on 109 

deep learning by integrating Global Ecosystem Dynamics Investigation and Ice, Cloud and land Elevation Satellite -2 data. 110 

This dataset has a spatial resolution of 30 m and corresponds to 2019. The accuracy of this national forest canopy height data 111 

was assessed by comparing three independent validation datasets, indicating high accuracy for the canopy height product by 112 

neural network guided interpolation (R2 ≥ 0.55, RMSE ≤ 5.5 m) (Liu et al., 2022). Notably, the forest extent used in this dataset 113 

is consistent with the forest extent mentioned earlier for planted and natural forests, ensuring spatial consistency when 114 

estimating forest age. 115 

2.1.5 Climate data 116 

Climate data were acquired from Worldclim 2.1 (https://worldclim.org/), which offers 19 bioclimatic variables, including 117 

temperature and precipitation, with 30 arc-second resolutions. The 19 bioclimatic variables include annual trends, seasonality, 118 

and extreme environmental factors in temperature and precipitation. We resampled the 19 GeoTiff (.tif) files to 30 m resolution 119 

using a nearest-resampling method for spatial resolution consistency. To reduce the dimension of bioclimatic variables, we 120 

applied a principal component analysis to map the 19 bioclimatic variables into a new principal component (PC) space. We 121 

use the first three components PC1, PC2, PC3 to represent the climate factors. According to the results of the analysis, PC1 122 

gives annual trends in temperature and precipitation, PC2 gives seasonal variations in temperature and precipitation, and PC3 123 

gives precipitation and temperature extremes (Supplementary Table 1). 124 

2.1.6 Soil data 125 

Soil data were extracted from the harmonized world soil database, V1.2, developed jointly by the Food and Agriculture 126 

Organization of the United Nations, the International Institute for Applied Systems, the ISRIC-World Soil Information, the 127 

Institute of Soil Science, Chinese Academy of Sciences, and the Joint Research Centre of the European Commission with a 128 

resolution of 30 arc-seconds. As per previous studies, soil type and texture were selected from the soil dataset in this study to 129 
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construct the model to estimate forest age (Besnard et al., 2021a). We also resampled the soil data to 30 m using a nearest-130 

resampling method. 131 

2.1.7 Topographic data 132 

The Shuttle Radar Topography Mission (SRTM) V3 provides global digital elevation data at 30 m resolution and was used in 133 

this study to extract topographic variables (Su et al., 2020). Three topographic features, elevation, slope, and aspect, were 134 

calculated to estimate forest ages. 135 

Table 1. Descriptions of variables used to estimate the forest age of China. 136 

Data type Data source Resolution Time Variables 

Remote sensing 

images 
Landsat TM/ETM+/OLI  30m 

1985–

2020 
NBR 

Forest mask 
Planted and natural forest map (Cheng et 

al., 2023a) 
30m 2020 Planted and natural forest 

Forest canopy 

height data 
NNGI-Forest Canopy Height 30m 2019 Forest height 

Climate data WorldClim version 2.1 (Fick and 

Hijmans 2017) 

1 km 1970–

2000 

PC1, PC2, PC3 

Soil data Harmonized World Soil Database  

V1.2(https://www.fao.org/soils-

portal/data-hub/soil-maps-and-

databases/harmonized-world-soil-

database-v12/en/) 

30 arc-second 1971–

1981 

Soil type, soil texture  

Topographic 

data 

SRTM DEM  30 m 2000 Elevation, slope, and aspect  

 137 

2.2 Forest age estimation 138 

To generate the forest age map for China and explore the performance of MLAs to retrieve forest age, we applied two 139 

approaches to estimate forest age in China: the LandTrendr detection approach and the MLA-based approach. First, the 140 

LandTrendr was applied to detect stand-replacing disturbances based on the Landsat time series images. Second, the MLA-141 

based method estimated ages for undisturbed forest regions within Landsat time series data. Here, we assumed that undisturbed 142 

forests over the Landsat record (before 1985) have the similar structural and spectral features to natural forests. Figure 2 shows 143 

a detailed flowchart describing the framework for forest age estimation proposed in this study.  144 
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 145 

Figure 2. Framework of China’s forest age estimation. 146 

 147 

2.2.1 LandTrendr detection approach 148 

LandTrendr was designed to detect and analyse changes in surface features, particularly disturbances and recovery processes, 149 

and is commonly applied to multispectral remote sensing imagery from the Landsat satellite series to capture long-term forest 150 

disturbances (Du et al., 2022). Using LandTrendr to detect forest age involves the following steps: 151 

(1) Time series data transformation. LandTrendr transforms multiple temporal remote-sensing image datasets into a series of 152 

indices, such as the NBR. 153 

(2) Breakpoint detection. Using the generated time series indices, LandTrendr retraces from the state in 2020 in search of 154 

breakpoints in the time series. These breakpoints signify transition points in the time series, which indicate instances of surface 155 

disturbance or recovery. 156 

(3) Age estimation. By pinpointing breakpoints, the time of occurrence for each breakpoint is established. Forest age estimates 157 

for the current location are accomplished by subtracting the breakpoint time from the latest time. 158 

LandTrendr was implemented on the GEE platform by using the function of runLT() provided by the LT_GEE API (Kennedy 159 

et al., 2018). Table 1 lists the main input parameters. 160 

Table 1. Parameters of LandTrendr used in this study. 161 
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Parameters Definition Value 

maxSegments Maximum number of segments to be fitted on the time 

series 

10 

spikeThreshold Threshold for dampening the spikes (1.0 means no 

dampening) 

0.9 

vertexCountOvershoot The initial model can overshoot the maxSegments + 1 

vertices by this amount. Later, it will be pruned down to 

maxSegments + 1 

3 

preventOneYearRecovery Prevent segments that represent one-year recoveries False 

recoveryThreshold If a segment has a recovery rate faster than 1/recovery 

threshold (in years), then the segment is disallowed 

0.25 

pvalThreshold If the p-value of the fitted model exceeds this threshold, 

then the current model is discarded and another one is fit 

by using the Levenberg–Marquardt optimizer 

0.05 

bestModelProportion Takes the model with most vertices that has a p-value that 

is at most this fraction away from the model with the 

lowest p-value 

0.75 

minObservationsNeeded Minimum observations required to perform output fitting 6 

 162 

2.2.2 Machine learning approach 163 

(1) MLA selection 164 

This study used the following model-screening procedure to explore which model works best for each vegetation division. 165 

First, we used the automated machine learning (Auto-ML) open-source Python library LazyPredict to filter for alternative 166 

models. LazyRegressor (including 40 MLAs) was used to build stand-age estimation models based on all data, which helps to 167 

understand which MLA works well without tuning parameters. The performing models with R2 greater than 0.60 in each 168 

vegetation division were concentrated in thirteen MLAs (Supplementary Table 2). Second, by splitting training data and testing 169 

data, the top three MLAs for each vegetation division were determined (Supplementary Table 2). It can be found that the 170 

potential optimal models of eight vegetation divisions is concentrated in RF, Gradient Boosting Decision Tree (GBDT), 171 

Histogram Gradient Boosting (HistGradientBoost), Light Gradient Boosting Machine (LightGBM), and Categorical Boosting 172 

(CatBoost).  173 

RF is an ensemble learning method that combines multiple decision trees (Breiman 2001; Dutta et al., 2020). It leverages the 174 

wisdom of crowds to make accurate predictions. RF mitigates overfitting and provides robust results by training each tree on 175 

a random subset of the data and features (Lavanya et al., 2017; Guo et al., 2019). GBDT is an ensemble technique that builds 176 
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a strong predictive model by sequentially training decision trees (Jerome 2001). Each tree corrects the errors of its predecessor 177 

(Wei et al., 2019), resulting in a highly accurate and robust model. HistGradientBoost is a variant of GBDT that employs 178 

histogram-based techniques. It efficiently approximates data distributions and reduces memory consumption during training. 179 

This algorithm is particularly beneficial when dealing with large datasets and complex features (Tesfagergish et al., 2022). 180 

LightGBM is a gradient-boosting framework that prioritizes speed and efficiency. It employs a histogram-based approach and 181 

parallel computing, making it suitable for large datasets. CatBoost is a new modification gradient boosting algorithm that is 182 

designed specifically for handling categorical features. It automatically encodes categorical variables, simplifying the data pre-183 

processing stage. CatBoost is known for its robustness and efficiency, can achieve high accuracy on a small-scale dataset. 184 

We implemented RF, GBDT, and HistGradientBoost by using the Scikit-learn package of Python 3.9.11, while the LightGBM 185 

and CatBoost algorithms were constructed by using the lightgbm and catboost packages of Python 3.9.11.  186 

(2) Hyperparameter tuning 187 

Hyperparameter tuning of MLAs is critical in the ML model training process because it significantly enhances the model’s 188 

performance, generalization capability, and adaptability (Sandha et al., 2020). Bayesian optimization has been selected for 189 

hyperparameter tuning due to its complicated derivative evaluation, and nonconvex-function-related features (Mekruksavanich 190 

et al., 2022). It is implemented by using Optuna, an open source hyperparameter optimization framework to automate 191 

hyperparameter searches (Akiba et al., 2019). The hyperparameters and their searching range in MLAs are listed in 192 

Supplementary Table 2. 193 

(3) Model interpretation 194 

Furthermore, we used Shapley Additive explanations (SHAP) values (Lundberg and Lee, 2017; Lundberg et al., 2019), a 195 

model-agnostic technique for interpreting ML models, to explore functional correlations between the variables and forest age 196 

(Besnard et al. 2021). SHAP derives the Shapely additive contribution values from coalitional game theory (Kim et al. 2023). 197 

By examining the contribution of each input variable to the model's output, SHAP can identify the primary drivers of the 198 

model's predictions and provide insights into the underlying causes that influence forest age (Sun et al. 2023). The higher the 199 

SHAP value, the larger the contribution of the variable. Here we calculated SHAP value using shap package in Python. 200 

2.3 Accuracy assessment 201 

We collected three independent data samples to validate the generated forest age map. The first is the forest inventory data 202 

independent of training data. The second source involved validation samples obtained from the literature. To ensure the 203 

samples collected were representative, we excluded samples with collection dates prior to 2010. The third source was the 204 

existing forest age products. As validation metrics, we used the coefficient of determination (R2), the root mean square error 205 

(RMSE), the mean absolute error (MAE), and the mean error (ME). These are given mathematically as 206 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦

∧

𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖)
2𝑛

𝑖=1

,  (2) 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖

𝑛

𝑖=1

− 𝑦𝑖
∧
)2,  (3) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖

∧
|

𝑛

𝑖=1

,  (5) 

𝑀𝐸 =
∑ (𝑦𝑖 − 𝑦�̂�)
𝑛
𝑖=0

𝑛
,  (6) 

where 𝑦𝑖 is the observed value for the ith analytic tree, 𝑦𝑖
∧

 is the predicted value of the ith observed value, n is the number of 207 

trees, and 𝑦𝑖  is the mean of the observed value. 208 

3 Results 209 

3.1 MLA performance for China’s forest age estimation  210 

Through a rigorous hyperparameter-optimization process and independent validation, four distinct MLAs (RF, GBDT, 211 

LightGBM, and CatBoost) were selected across eight different vegetation divisions (Table 2). GBDT performed exceptionally 212 

well for estimating the forest age of cold temperate needleleaf forest (CT) vegetation zone, producing R2 of 0.47 and RMSE 213 

of 4.95 years (MAE=17.99, ME=-1.86). RF excelled at estimating the forest age of warm temperate deciduous-broadleaf forest 214 

(TD) vegetation zone, producing an independent validation R2 of 0.61 and RMSE of 3.47 years (MAE=9.13, ME=-0.01). 215 

CatBoost consistently demonstrated strong performance for the Qinghai-Tibet Plateau alpine vegetation (QT), tropical 216 

monsoon forest-rainforest (TM), temperate steppe (TS), temperate desert (TD), and subtropical evergreen broadleaf forest (SE) 217 

zones, with R2 values ranging from 0.57 to 0.85 and RMSE values from 2.04 to 7.65 years. LGBMRegressor was the preferred 218 

choice in the temperate needleleaf-broadleaf mixed forest (TN) vegetation division, yielding an R2 of 0.63 and an RMSE of 219 

4.14 years. 220 

Table 2. MLA for eight vegetation divisions and their validation metrics. 221 

Vegetation division Algorithm R2 RMSE MAE ME 

CT GradientBoost 0.46 4.95 17.99 -1.86 

WT RF 0.61 3.47 9.13 -0.01 

QT CatBoost 0.57 7.65 42.58 10.43 

TM CatBoost 0.85 2.04 1.34 -0.08 

TS CatBoost 0.78 4.16 11.85 -0.87 

TD CatBoost 0.80 5.33 21.02 1.84 

TN LGBM 0.63 4.14 12.78 0.36 

SE CatBoost 0.70 3.49 7.97 0.00 
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 222 

We further analysed the factors influencing the forest age estimation in each vegetation division, and the findings are illustrated 223 

in Figure 3. While the prioritization of factors affecting forest age estimation varies across different vegetation divisions, 224 

canopy height is unquestionably the predominant factor influencing this estimation. Its absolute value is the highest of the CT, 225 

WT, TN, TS, and TM vegetation zones (Figure 3). Moreover, it is among the top three most influential factors in all the 226 

remaining vegetation zones. Subsequently, topographical conditions assume prominence, with elevation consistently featuring 227 

among the top three factors in the SHAP value across all vegetation divisions. In the TD vegetation division, elevation becomes 228 

the most influential factor. Climate factors earn third-tier consideration, particularly in the SE vegetation zone, where the 229 

impact of PC2 of the climate factors surpasses that of both canopy height and topographical conditions. In the other vegetation 230 

divisions, the influence of climate factors generally falls to the mid-range. In contrast, across all eight vegetation divisions, 231 

factors related to soil, such as soil type and soil texture, do not exert a pronounced influence on forest age estimation. 232 
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Figure 3. Order of shape values of factors affecting the estimation of forest age in different vegetation zones 234 

3.2 China’s forest age map 235 

China’s 30 m resolution forest-age map is presented in Figure 4. The mean of the estimated forest age is 56.11 years with a 236 

standard deviation of 32.67 years. Geographically, forests in northeast and southwest China are relatively older than those in 237 

other regions (Figure 4). At the provincial scale, the average forest age ranges from 3.9 to 116.8 years (Figure 5a, 238 

Supplementary Table 5), whereas Qinghai province has the highest mean forest age, and Hong Kong has the lowest mean 239 

forest age. Forest ages in Sichuan province are more varied than in other provinces (Figure 5a). On the regional scale, the QT 240 

vegetation zones have the oldest forests with an average of 138.0 years, followed by CT (107.6 years), TS (107.0 years), TN 241 

(68.3 years), TD (60.3 years), TM (53.0 years), and SE (49.2 years) (Figure 5b, Supplementary Table 6). The WT vegetation 242 

zones have the youngest forests (28.5 years). 243 

 244 

Figure 4. Distribution of China’s forest age with 30 m resolution. 245 
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 246 

 247 

 248 

Figure 5. Mean forest age on the (a) provincial and (b) regional scales. 249 
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3.3 Evaluation 250 

We used three independent data sources to evaluate the final forest age map, including forest inventory samples from 2003 to 251 

2008, field measurements collected from published papers, and existing remote sensing based forest age products. 252 

3.3.1 Comparison with forest inventory samples 253 

We initially validated the forest age estimations by using forest inventory data. The forest inventory samples were acquired 254 

from 2003 to 2008. To align with the time frame of the forest age data obtained in this study, we shifted the predicted values 255 

corresponding to each sample forward by ~16 years. This strategy allows us to compare them with the inventory-measured 256 

forest ages. Figure 6a shows the comparison, which suggests that they have a significant linear relationship with R2 = 0.51 257 

(Figure 6a).  258 

3.3.2 Comparison with field measurements 259 

We collected 99 field measurements of mean forest stand age after 2010 from published papers (Supplementary Table 7) and 260 

compared them with our estimated results. Figure 6b shows that the predicted forest ages also present a significant linear 261 

relationship with field measurements, with R2 = 0.62. 262 

 263 

Figure 6. Scatter plots of (a) forest inventory age vs predicted forest age for this study and (b) field measurements of forest stand age 264 
collected from published papers vs predicted forest. 265 

https://doi.org/10.5194/essd-2023-385
Preprint. Discussion started: 10 October 2023
c© Author(s) 2023. CC BY 4.0 License.



16 

 

3.3.3 Comparison with existing forest age products 266 

We compared our estimated forest age map with an independent global forest age data product produced by Besnard et al. 267 

(2021a). Figure 7 shows the difference between these two maps, which suggests an average difference of 9.7 years. Our mapped 268 

forest age is older in  northeast regions but younger forests in the middle regions than that from Besnard et al. (2021a) dataset. 269 

In addition, we gathered the existing remote sensing based forest age maps over China from published datasets and compared 270 

their average forest age with our estimation (Table 3). According to the available data, the average forest age in China ranged 271 

from 40 to 43 years between 2000 and 2013, corresponding to approximately 50 to 53 years in 2020. This aligns closely with 272 

the average forest age of 56.1 years obtained in this study for the year of 2020, further underscoring the reliability of the forest 273 

age mapped in this study. 274 

 275 

Figure 7. Comparison with global forest age product. The inset at the top left shows the frequency distribution of differences between the 276 
global forest age map and our estimated forest age map. 277 

Table 3. China’s mean forest age collected from published papers. 278 
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Source Mean forest age (years) Resolution Mapping year 

Zhang et al. (2017) 42.6 1 km 2013 

Zhang et al. (2014) 43 1 km 2005 

Dai Ming (2011) 40.6 8 km 1998 

Wang et al. (2007) <40 1 km 2001 

(Xia et al., 2023) 44.0 1 km 2015 

This study 56.1 30 m 2020 

 279 

4 Discussion 280 

A high-spatial resolution forest age map is an important input for accurately quantifying forest carbon storage and potential. 281 

Although several forest age maps for China were generated in the most recent decades, their spatial resolution is coarser, 282 

ranging from 1 to 8 km (e.g., Zhang et al., 2014; Zhang et al., 2017), which does not satisfy the application requirements for 283 

local-to-regional scales (Xiao et al., 2023). Therefore, we generated a 30 m resolution forest age map of China using remote 284 

sensing and inventory data for 2020. Validation against independent forest inventory samples, field measurements collected 285 

from published papers, and existing forest age products indicate that the estimated forest age map has R2 of 0.51 to 0.62, and 286 

presented well spatial agreement with the existing forest age product. Such a high-resolution and timely forest age dataset is 287 

vital to assess ecological benefits of China’s forests and to manage forest resources for sustainable development. 288 

The generated forest age map indicates that 40.08% of forests are younger than 40 years, 38.11% are 41–80 years old, and 289 

21.81% are over 80 years old. This result indicates that most forests in China are young, which is consistent with the findings 290 

of Zhang et al. (2017) and Zhang et al. (2014), even though the specific proportions might vary slightly, which is mainly 291 

because they produced forest age distribution data for the year of 2005, whereas our data represents forest age in 2020. 292 

Furthermore, similar to Zhang et al. (2017) and Zhang et al. (2014), forests younger than 40 years are primarily in southern 293 

and eastern China, whereas forests older than 80 years are predominantly in northeastern and southwestern China (Figure 4). 294 

We further analyse the forest age by using China’s planted and natural forest mask generated by Cheng et al. (2023) for 2020. 295 

The results reveal that the average forest age for planted forests in China is 29.1 years with a standard deviation of 18.2 years, 296 

whereas natural forests have an average age of 69.7 years with a standard deviation of 30.6 years. This result aligns closely 297 

with the reported 16.5 years for China’s planted forests in 2005 (which equates to approximately 31 years in 2020) by Yu et 298 

al. (2020b). 299 

 300 

This study combines two methods to estimate forest age across China. The first method uses time-series remote sensing 301 

imagery and the LandTrendr algorithm to detect pixels that changed within the forest extent from 1985 to 2020. The forest age 302 

was estimated according the time since the last disturbance serving as a proxy for forest age. This approach has been 303 
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extensively used to estimate forest age and is generally acknowledged to be accurate and reliable for detecting disturbance 304 

(Hermosilla et al., 2016). For instance, Du et al. (2022) used the LandTrendr algorithm to detect planting times of global 305 

planted forests, and Xiao et al. (2023) estimated the forest age of young forests in China since 1984 by using the CCDC time-306 

series algorithm. These successful cases validate the feasibility of using time-series change-detection algorithms to estimate 307 

the age of disturbed forests. In this study, we compared our change-detection derived forest age with the age of young forests 308 

provided by Xiao et al. (2023) (Figure 8). These two outcomes have a mean difference of −3.79 years (Figure 8a) and have a 309 

significant linear relationship with R2 = 0.53 (Figure 8b). However, this approach only detects the forest age of disturbed areas 310 

based on Landsat images; for undisturbed forests, we propose using nonparametric MLAs to estimate forest age. Additionally, 311 

considering China’s abundant forest resources, wide distribution, and complex terrain, this study proposes an approach to 312 

study forest-age estimation models based on MLAs. 313 

 314 

Figure 8. (a) Age difference and (b) linear relationship between estimated forest age and China’s Young Forest Age dataset generated by 315 
Xiao et al. (2023).  316 

We investigate in-depth the suitability of current mainstream MLAs for estimating forest age. For each vegetation division, 317 

we establish the optimal MLA and its optimal parameters (Table 2, Supplementary Table 3). Of the established MLAs, the 318 

ensemble learning approaches perform best for both training and evaluation compared with individual-based learners. Several 319 

previous studies support the idea that ensemble techniques have achieved better performance than that of its base learners (e. 320 

g. Rodriguez et al., 2006; Banfield et al., 2007; Canul-Reich et al., 2007; Rokach, 2009; De Stefano et al., 2011; Matloob et 321 

al., 2021). Bagging and boosting are two mainstream ensemble techniques in ensemble learning that combine multiple base 322 

models to improve predictive performance. Bagging reduces variance, whereas boosting reduces bias and improves overall 323 

model performance (Abbasi et al., 2022). However, most previous studies focus on bagging-based RF models to derive forest 324 
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structure parameters in remote sensing fields (Simard et al., 2011; Cartus et al., 2012; Montesano et al., 2013; Matasci et al., 325 

2018; Luther et al., 2019; Bolton et al., 2020). The present study highlights that super ensemble learning algorithms based on 326 

boosting, including GBDT, LightGBM, and CatBoost, demonstrate higher accuracy in estimating China’s forest age compared 327 

to the bagging-based RF algorithm. Furthermore, within the current ensemble learning framework, the CatBoost algorithm 328 

based on boosting has a clear advantage for estimating forest age in China (Table 2). It produces optimal results in five 329 

vegetation zones and is as accurate as the best-performing algorithms in the remaining vegetation zones (Supplementary Table 330 

4). Therefore, we recommend giving priority to the utilization of the CatBoost algorithm in deriving the forest structural 331 

parameters in China. 332 

 333 

In the process of machine learning modelling for forest age estimation, we selected a total of 10 features, including canopy 334 

height, meteorological factors, soil factors, terrain factors, and human activities. Factor analysis indicates that canopy height 335 

has significantly influence forest age modelling, which is consistent with previous research, such as Zhang et al. (2017), who 336 

estimated forest age in China based on the relationship between canopy height and forest age. The main reason is that canopy 337 

height is typically correlated with the growth period (Sharma and Parton, 2007; Schumacher et al., 2020b; Lin et al., 2023). 338 

Young trees usually have shorter canopy height and, and as trees age, canopy height gradually increases (Yu et al., 2020b). 339 

Therefore, canopy height gives clues about tree age, and many age-estimation models are based on forest height (Lin et al., 340 

2023). Terrain conditions also play important roles in all vegetation zones, especially the elevation and slope features (Figure 341 

2). This is mainly because terrain factors are closely related to vegetation distribution, growth conditions, and hydrological 342 

processes (Fernández-Martínez et al., 2014) and affecting forest age estimation (Lin et al., 2008). Climate factors, including 343 

temperature and precipitation, also play a significant role in estimating forest age and have been applied to estimate global 344 

forest age (Besnard et al., 2021a). Climate elements are most pronounced in the SE and QT vegetation zones because these 345 

two zones belong to areas with extreme climates and pronounced seasonal variations (Zhang et al., 2018). The SE region has 346 

a warm and humid climate with abundant rainfall (Zhang et al., 2018), which aligns with seasonal growth, making it influential 347 

in forest age estimation. The QT region experiences extreme temperature fluctuations, with extremely cold winters and short 348 

and cool summers, significantly affecting tree growth rates and cycles (Zhang et al., 2021). Although soil and human activities 349 

seem to have a relatively smaller impact in this study, the high accuracy achieved in this study is attributed to the combined 350 

contributions of all factors. 351 

 352 

Overall, we produce a reliable forest age map for China. This forest age product has been validated by independent field 353 

samples and compared against existing datasets with a R2 ranging from 0.51 to 0.62 (Figure 6). However, it is imperative to 354 

acknowledge that intrinsic uncertainties arise from data-related constraints. Primarily, the utilization of forest mask that 355 

delineate planted and natural forests introduces an inescapable source of uncertainty, which is particularly high (approximately 356 

10%) in the southern regions of China (Cheng et al., 2023a). Furthermore, the dependence on canopy-height data generated 357 

by Liu et al. (2022) as the crucial determinant in forest age estimation (Figure 2) necessitates meticulous consideration (Zhang 358 
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et al., 2017), giving the uncertainties in the canopy-height data (R2=0.55) could strongly affect the accuracy in forest age 359 

modelling. Finally, when benchmarked against extant products, conspicuous disparities in forest age estimates appear within 360 

the northeastern and southwestern regions (Figure 6). These disparities, coupled with insights from forest inventory data, 361 

highlight the prevalence of older forests (exceeding 100 years) within these regions (Figures 1 and 4). The unique challenge 362 

posed by estimating the age of such older forests, characterized by sluggish growth rates (Maltman et al., 2023b), accentuates 363 

the sensitivity to crown height data. Consequently, the uncertainty associated with canopy height data is conspicuously 364 

accentuated in these regions. 365 

5 Data availability 366 

The 30 m resolution forest age map of China generated by this study is openly available at 367 

https://doi.org/10.5281/zenodo.8354262 (Cheng et al., 2023b). Please contact the authors for more detailed information 368 

6 Conclusion 369 

High-resolution and spatially explicit forest age mapping for China play a crucial role in accurately quantifying the current 370 

carbon sequestration of forest ecosystems and its potential in the future. Currently, publicly available China’s forest age data 371 

suffer from low resolution and incomplete coverage of age ranges, making it difficult to meet the requirements of studies at 372 

various spatial scales. Therefore, this study combines time-series analysis of remote sensing imagery with MLAs to create the 373 

first 30 m resolution China’s forest age map for the year of 2020. Validation against forest inventory data, field measurements, 374 

and existing products demonstrates the R2 values between 0.51 and 0.62. The estimated forest age data reveal an average forest 375 

age of 56.1 years for China, with a standard deviation of 32.7 years. This dataset holds significant importance for understanding 376 

the carbon source and sink dynamics in China’s forest ecosystem. 377 
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